Asymptotic Properties of Linear Fourth Order Differential Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic problems for fourth-order nonlinear differential equations

By a solution of () we mean a function x ∈ C[Tx,∞), Tx ≥ , which satisfies () on [Tx,∞). A solution is said to be nonoscillatory if x(t) =  for large t; otherwise, it is said to be oscillatory. Observe that if λ≥ , according to [, Theorem .], all nontrivial solutions of () satisfy sup{|x(t)| : t ≥ T} >  for T ≥ Tx, on the contrary to the case λ < , when nontrivial solutions satisfy...

متن کامل

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Asymptotic Properties of Third-Order Delay Trinomial Differential Equations

and Applied Analysis 3 2. Main Results It will be derived that properties of E are closely connected with the corresponding secondorder differential equation ( 1 r t v′ t )′ p t v t 0 Ev as the following theorem says. Theorem 2.1. Let v t be a positive solution of Ev . Then E can be written as ( v2 t r t ( 1 v t y′ t )′)′ q t v t y σ t 0. E Proof. The proof follows from the fact that 1 v t ( v2...

متن کامل

On Asymptotic Properties of Solutions of Third Order Linear Differential Equations with Deviating Arguments

The asymptotic properties of solutions of the equation u 000 (t) = p 1 (t)u(1 (t))+p 2 (t)u 0 (2 (t)), are investigatedwhere p i : a;+1! R (i = 1;2) are locally summable functions, i : a;+1! R (i = 1;2) measurable ones and i (t) t (i = 1;2). In particular, it is proved that if p 1 (t) 0, p 2 2 (t) (t)jp 1 (t)j, Z +1 a 1 (t) ? t] 2 p 1 (t)dt < +1 and Z +1 a (t)dt < +1; then each solution with th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1976

ISSN: 0002-9939

DOI: 10.2307/2042034